Колонизация Марса
Марс наиболее подходящий кандидат на терраформацию (площадь поверхности ~ 144,8 млн.км2 что является 28.4 % поверхности земли). Ускорение свободного падения на поверхности Марса состовляет 3,72м/с2, а уровень солнечной энергии воспринимаемой Марсом составляет 43 % от уровня принимаемого поверхностью Земли. В настоящее время Марс представляет собой безжизненную (возможно) планету больше похожую на Луну, чем на Землю. В тоже время полученный объем информации о Марсе говорит о том что некогда природные условия на нем были благоприятны для поддержания и возможного зарождения жизни. Марс располагает огромными количествами водного льда и несет на своей поверхности многочисленные следы своего благоприятного климата в прошлом (речные долины, отмели пляжей, залежи глин и многое другое). Многие современные ученые уверены в том, что возможно нагреть планету и создать на ней более или менее плотную атмосферу, и NASA даже проводит околонаучные дискуссии по этому поводу. Однако в этом направлении есть несомненные трудности, которые мешают терраформировать Марс или какую-либо другую планету в настоящее время. Гигантские запасы воды и связанного кислорода в составе пероксидов и озонидов в почве Марса дают прочное основание предполагать, что при воздействии на марсианский климат станет вполне возможным терраформирование этой планеты.
В этом направлении необходимы огромные усилия всего человечества, и уже в нынешнее время вполне по силам организация финансово-технических образований (клубов, обществ и компаний) на Земле предназначенных для освоения и будущего изменения климатических условий Марса. В настоящее время земляне очень хорошо освоили использование ядерной энергии, однако до сих пор нерешёнными остаются важные проблемы, связанные с транспортировкой энергетического оборудования на Марс и его обслуживанием на самой планете.
В то же время сам по себе Марс обладает весьма значительными ресурсами металлов, и в том числе и ресурсами ядерного топлива (уран, торий) и при наладке на Марсе промышленности и значительном использовании ядерного топлива соответственно предполагается колоссальное количество сбросного тепла в атмосферу Марса.
Одним из важнейших технологических препятствий для освоения не только Марса, но и других планет является то обстоятельство, что в настоящее время слишком ограничены возможности космических транспортных средств, и в этой связи большие надежды возлагаются на газофазные ядерные ракетные двигатели.
Только при наличии ядерных ракетных двигателей, обладающими колоссальной тягой, надежностью и скоростью, станет вполне возможным доставка предназначенных для начального этапа терроформации тяжелых грузов к Марсу, а в перспективе даже и астероидов из водно-аммиачного льда предназначенных для наполнения атмосферы и гидросферы Марса азотом, водой и кислородом. Предположительно астероиды могут вывозиться из пояса астероидов и даже из пояса Койпера с помощью ракет или солнечных парусов. Терраформирование Марса может происходить как при прямом введении в его атмосферу искуственно изготовляемых парниковых газов (фреонов), так и нагреве поверхности планеты с помощью направленного орбитальными зеркалами солнечного излучения и затемнения поверхности полярных шапок сажей или полимерными пленками, и косвенно при освоении Марса и его полезных ископаемых (металлургия, горные взрывные работы и проч). Оба процесса могут происходить одновременно и вносить большой вклад в изменение климата Марса. Например, развитие масштабной ядерной, а в перспективе и термоядерной энергетики позволит, так или иначе, высвобождать огромные объемы вторичного тепла в атмосфере, а в перспективе и в гидросфере Марса. Так, например, совершенно очевидно, что при наладке крупной энергетики и выработке водорода и кислорода для наземного марсианского транспорта, космических кораблей и энергоснабжения поселений возникнут условия для высвобождения больших объемов тепловой энергии в атмосфере. В совокупности общий объем энергетики будет нагревать атмосферу Марса, и способствовать при таянии полярных шапок значительному парниковому эффекту.
Основные способы терраформирования Марса
1. Выброс в атмосферу Марса искусственных парниковых газов: тетрафторметан, октофторпропан.
2. Затемнение поверхности полярных шапок: сажа, напыляемые полимерные пленки, взрывное уменьшение альбедо.
3. Орбитальный прогрев поверхности полярных: космические сверхлегкие орбитальные зеркала.
4. Бомбардировка астероидами: водно-аммиачные льды.
5. Техногенная деятельность: выброс тепла атомными электростанциями и транспортом, потоки тепла от купольных поселений.
6. Биогенное воздействие: введение земных бактерий и водорослей устойчивых на Марсе (Chroococcidiopsis sp, Matteia sp, Deinococcus radiodurans, и др).
7. Технические возможности осуществления
На современном этапе развития технологий, возможности для проведения терроформирования климатических условий на других планетах весьма ограниченные, но не нулевые. Уже к концу XX-го века земляне обладали возможностями для запуска ракет к наиболее далеким планетам Солнечной системы для выполнения задач научного характера. Мощности и скорости, а также возможности масштабного запуска ракет в космос в начале XXI-го века значительно возрасли, и в случае проявления доброй воли и желания крупных космических держав (Россия, США), уже в наши дни человечеству вполне под силу выполнения пусть и не глобальных, а мелких задач по терраформированию планет. В настоящее время возможности современной астрономии, ракетной техники, вычислительной техники и других областей высоких технологий прямо или косвенно позволяют, например, буксировать небольшие астероиды, вносить небольшие объемы бактерий определенного сорта в атмосферы или почву других планет, доставлять необходимое энергетическое, научное и другое оборудование. Важнейшие задачи цивилизации землян необходимые для обеспечения возможностей будущего терраформирования планет и их спутников выглядят следующим образом:
* Стремление и добрая воля космических держав: Необходимая компонента для начала практической реализации подготовки и изучения возможностей терраформирования планет.
* Создание экономических фондов и компаний по освоению планет: Необходимая государственная и частная инициатива для финансовой поддержки научных проектов в деле изучения космоса.
* Развитие наблюдательной астрономии: Необходимый процесс для экономичного и быстрого изучения объектов солнечной системы.
* Изучение планет с помощью зондов: Важная область научного развития, как источник детальной информации об интересующих небесных телах и их составе.
* Развитие энергетики Земли: Увеличение возможностей для обеспечения космических запусков и сопутствующих отраслей промышленности.
* Постройка мощных ракетных двигателей: Работы в области газофазных ядерных ракетных двигателей, электроядерных двигательных установок, солнечных парусов, ионных ракетных двигателей.
* Развитие материаловедения: Поиск новых материалов и композиций, пригодных для использования в процессах терроформирования и строительства космических транспортных средств.
* Развитие биотехнологий: Тщательное изучение микроорганизмов живущих на Земле, и предполагаемых микроорганизмов живущих в литосфере Марса. Интенсивные работы по выведению новых видов микроорганизмов, пригодных для терраформирования.